资源类型

期刊论文 1429

会议视频 28

会议信息 4

年份

2024 2

2023 203

2022 202

2021 215

2020 124

2019 63

2018 37

2017 67

2016 49

2015 52

2014 69

2013 62

2012 45

2011 38

2010 49

2009 40

2008 34

2007 46

2006 5

2005 3

展开 ︾

关键词

DX桩 9

吸附 9

SARS-CoV-2 7

承载力 6

微波散射计 5

碳中和 5

COVID-19 4

Cu(In 4

HY-2 4

2019 3

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

代谢与免疫 3

光催化 3

容量 3

工程管理 3

展开 ︾

检索范围:

排序: 展示方式:

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added

Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 832-844 doi: 10.1007/s11705-019-1871-7

摘要: The desulfurization by seawater and mineral carbonation have been paid more and more attention. In this study, the feasibility of magnesia and seawater for the integrated disposal of SO and CO in the simulated flue gas was investigated. The process was conducted by adding MgO in seawater to reinforce the absorption of SO and facilitate the mineralization of CO by calcium ions. The influences of various factors, including digestion time of magnesia, reaction temperature, and salinity were also investigated. The results show that the reaction temperature can effectively improve the carbonation reaction. After combing SO removal process with mineral carbonation, Ca removal rate has a certain degree of decrease. The best carbonation condition is to use 1.5 times artificial seawater (the concentrations of reagents are 1.5 times of seawater) at 80°C and without digestion of magnesia. The desulfurization rate is close to 100% under any condition investigated, indicating that the seawater has a sufficient desulfurization capacity with adding magnesia. This work has demonstrated that a combination of the absorption of SO with the absorption and mineralization of CO is feasible.

关键词: mineral carbonation     wet SO2 disposal     seawater     desulfurization    

Preparation and characterization of SO42-/TiO2 and S2O82-/TiO2 catalysts

MA Xuedan, GUO Daishi, JIANG Qizhong, MA Zifeng, MA Zhengfei, YE Weidong, LI Chunbo

《化学科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 45-49 doi: 10.1007/s11705-007-0009-5

摘要: Nanosized solid superacids SO/TiO and SO/TiO, as well as MCM-41-supported SO/ZrO, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO/TiO and SO/TiO possess not only nanosized particles with diameters <7.0 nm, a BET surface greater than 140 cm/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO/ZrO/MCM-41, SO/TiO and SO/TiO exhibit mainly Br¢nsted acidities. The strongest Br¢nsted acid sites were produced on SO/TiO promoted with HSO, while Lewis acid sites on SO/TiO even stronger than those on SO/ZrO/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO/TiO and SO/TiO exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO/ZrO/MCM-41. It can be concluded that the existence of more Br¢nsted acid sites was favorable for proton participation in the cyclization reaction.

关键词: exhibit     Different     persulfate     adsorption-desorption     catalytic    

Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions

《环境科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 3-3 doi: 10.1007/s11783-021-1437-z

摘要:

Microplastics (MPs) are widely present in a variety of environmental media and have attracted more and more attention worldwide. However, the effect of MPs on the interaction between heavy metals and soil, especially in soil solid fraction level, is not well understood. In this study, batch experiments were performed to investigate the adsorption characteristics of Cd in bulk soil and three soil solid fractions (i.e. particulate organo matter (POM), organic-mineral compounds (OMC), and mineral) with or without polypropylene (PP) MPs.

关键词: Polypropylene microplastics     Cadmium     Adsorption     POM     OMC     Mineral    

Optimization of process parameters for preparation of powdered activated coke to achieve maximum SO

Binxuan ZHOU, Tao WANG, Tianming XU, Cheng LI, Yuan ZHAO, Jiapeng FU, Zhen ZHANG, Zhanlong SONG, Chunyuan MA

《能源前沿(英文)》 2021年 第15卷 第1期   页码 159-169 doi: 10.1007/s11708-020-0719-7

摘要: Powdered activated coke (PAC) is a good adsorbent of SO , but its adsorption capacity is affected by many factors in the preparation process. To prepare the PAC with a high SO adsorption capacity using JJ-coal under flue gas atmosphere, six parameters (oxygen-coal equivalent ratio, reaction temperature, reaction time, O concentration, CO concentration, and H O concentration) were screened and optimized using the response surface methodology (RSM). The results of factor screening experiment show that reaction temperature, O concentration, and H O (g) concentration are the significant factors. Then, a quadratic polynomial regression model between the significant factors and SO adsorption capacity was established using the central composite design (CCD). The model optimization results indicate that when reaction temperature is 904.74°C, O concentration is 4.67%, H O concentration is 27.98%, the PAC (PAC-OP) prepared had a higher SO adsorption capacity of 68.15 mg/g while its SO adsorption capacity from a validation experiment is 68.82 mg/g, and the error with the optimal value is 0.98%. Compared to two typical commercial activated cokes (ACs), PAC-OP has relatively more developed pore structures, and its and are 349 m /g and 0.1475 cm /g, significantly higher than the 186 m /g and 0.1041 cm /g of AC1, and the 132 m /g and 0.0768 cm /g of AC2. Besides, it also has abundant oxygen-containing functional groups, its surface O content being 12.09%, higher than the 10.42% of AC1 and 10.49% of AC2. Inevitably, the SO adsorption capacity of PAC-OP is also significantly higher than that of both AC1 and AC2, which is 68.82 mg/g versus 32.53 mg/g and 24.79 mg/g, respectively.

关键词: powdered activated coke (PAC)     SO2 adsorption capacity     parameters optimization     response surface methodology    

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 853-866 doi: 10.1007/s11705-022-2256-x

摘要: The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg∙g‒1 is achieved under the conditions of 20 mg∙L‒1 adsorbents, 100 mg∙L‒1 dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption–alkaline desorption experiments.

关键词: chitosan foam     cellulose nanocrystals     acid red 134     adsorption    

Performance and mechanism of carbamazepine removal by FeS-SO process: experimental investigation and

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1713-1

摘要:

● Synergistic removal of carbamazepine (CBZ) was obtained in the FeS-S2O82– process.

关键词: FeS     S2O82–     Carbamazepine     DFT calculations     Degradation routes    

Effect of biochar amendment on soil’s retention capacity for estrogenic hormones from poultry manure

Sukhjot MANN, Zhiming QI, Shiv O. PRASHER, Lanhai LI, Dongwei GUI, Qianjing JIANG

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 208-219 doi: 10.15302/J-FASE-2017138

摘要: Most animals, including humans, produce natural sex hormones such as estrogens: 17β-estradiol (E2) and estrone (E1). These compounds are able to disrupt the reproductive systems of living organisms at trace concentrations (ng·L ). This experiment tests the hypothesis that 1% slow pyrolysis biochar-amended sandy soil could retain significant amount of estrogens (E1, E2) from poultry manure in its second year of application. The experiment was conducted over 46 days and consisted of a series of lysimeters containing sandy soil with biochar-amended topsoil. The application rate of poultry manure was kept at 2.47 kg·m . The biochar held a significant concentration of hormone during the first year of its application. However, in the following year (current study), there was no significant retention of hormones in the biochar-amended soil. During the first year after application, the biochar was fresh, so its pores were available for hydrophobic interactions and held significant concentration of hormones. As time passed there were several biotic and abiotic changes on the surface of the biochar so that after some physical fragmentation, pores on the surface were no longer available for hydrophobic interactions. The biochar started releasing dissolved organic carbon, which facilitated greater mobility of hormones from poultry manure down the soil profile.

关键词: adsorption     degradation     dissolved organic carbon     17β-estradiol (E2)     estrone (E1)    

Experimental study on capturing CO 2 greenhouse gas by mixture of ammonia and soil

Ying WU, Yifei WANG, Qinghua ZENG, Xin GONG, Zunhong YU,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 468-473 doi: 10.1007/s11705-009-0257-7

摘要: This paper presents our study on removal of carbon dioxide (CO) greenhouse gas emissions by using the mixture of ammonia and soil. CO capture capacity using this method is 15% higher than the sum of ammonia chemical absorption capacity and soil physical adsorption capacity. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) are utilized to study this synergism. The removal effect is not only reflected in ammonia chemical reaction with CO. CO can also be absorbed by ammonium bicarbonate (NHHCO) crystal, which is the main component of the product, or wrapped in the pore of the crystal or packed in the gap between the crystal and the soil. CO can be permanently deposited as carbonated minerals in the subsoil earth layers.

关键词: electron microscopy     product     physical adsorption     capacity     spectroscopy    

Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and

Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 120-132 doi: 10.1007/s11705-018-1730-y

摘要: In this work, we have synthesized two polymer-grafted cation exchangers: one via the grafting-from approach, in which sulfopropyl methacrylate (SPM) is grafted through atom transfer radical polymerization onto Sepharose FF (the thus resulting exchanger is referred as Sep- -SPM), and another via the grafting-to approach, in which the polymer of SPM is directly coupled onto Sepharose FF (the thus resulting exchanger is called as Sep- SPM). Protein adsorption on these two cation exchangers have been also investigated. At the same ligand density, Sep- -SPM has a larger accessible pore radius and a smaller depth of polymer layer than Sep- SPM, due to the controllable introduction of polymer chains with the regular distribution of the ligand. Therefore, high-capacity adsorption of lysozyme and -globulin could be achieved simultaneously in Sep- -SPM with an ionic capacity (IC) of 308 mmol·L . However, Sep- SPM has an irregular chain distribution and different architecture of polymer layer, which lead to more serious repulsive interaction to proteins, and thus Sep- SPM has a lower adsorption capacity for -globulin than Sep- -SPM with the similar IC. Moreover, the results from protein uptake experiments indicate that the facilitated transport of adsorbed -globulin occurs only in Sep- SPM and depends on the architecture of polymer layers. Our research provides a clear clue for the development of high-performance protein chromatography.

关键词: polymer-grafted ionic exchanger     grafting technique     protein adsorption     atom transfer radical polymerization     γ-globulin    

洁净煤技术的新发展——一种火电厂SO2的资源化技术

肖文德,袁渭康

《中国工程科学》 2000年 第2卷 第5期   页码 77-83

摘要: 作者提出了一种以合成氨为基础的新氨法(NADS),回收烟气中的SO2,生产硫酸铵、磷酸铵或硝酸铵化肥,并联产工业浓硫酸,已在2.5万kW机组试验成功,建立了计算机模拟软件。

关键词: 烟气脱硫     洁净煤技术     二氧化硫     电厂         化肥    

Preparation and adsorption performances of mesopore-enriched bamboo activated carbon

WANG Yuxin, LIU Congmin, ZHOU Yaping

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 473-477 doi: 10.1007/s11705-008-0081-5

摘要: Activated carbon with high specific surface area and considerable mesopores was prepared from bamboo scraps by phosphoric acid activation. The effect of activation conditions was studied. Under the conditions of impregnating bamboo with 80% HPO at 80°C for 9 days and activation at 500°C for 4 h, the prepared activated carbon had the highest mesopore volume of 0.67 cm/g, a specific surface area of 1567 m/g, and the mesopore ratio reached 47.18%. The study on adsorption isotherms of CH, CO, N and O on the activated carbon were carried out at 298 K. The considerable difference in the adsorption capacity between CO and the other gases was observed, which would be of interest for the adsorptive separation/purification of gaseous CO from its mixtures, especially from mixtures with N and/or O.

关键词: mesopore volume     gaseous     considerable difference     adsorption capacity     activation    

Separation of gibberellic acid (GA3) by macroporous adsorption resins

WANG Ruifang, YANG Jialing, SHI Zuoqing, OU Lailiang

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 171-175 doi: 10.1007/s11705-008-0025-0

摘要: The adsorption effects of several macroporous adsorption resins for gibberellic acid (GA3) were investigated. The dynamic adsorption capacity is 58.38 mg/g dry beads for resin R4 and 96.46 mg/g dry beads for resin R5 which is consistent with the surface area. Aqueous methanol (50%, V/V) is a good eluent and the yield of GA3 is above 95%. The concentration of GA3 could increase five-fold after an adsorption-elution cycle and this is important when considering further crystallization of GA3 in an industrial process.

关键词: industrial     gibberellic     adsorption capacity     crystallization     consistent    

Experimental research on dynamic operating characteristics of a novel silica gel-water adsorption chiller

WANG Dechang, WU Jingyi, WANG Ruzhu, DOU Weidong

《能源前沿(英文)》 2007年 第1卷 第3期   页码 347-351 doi: 10.1007/s11708-007-0052-4

摘要: A novel silica gel-water adsorption chiller consisting of two adsorption/desorption chambers and an evaporator with one heat-pipe working chamber is experimentally studied. The dynamic operating characteristics of the chiller and the thermodynamic characteristics of the adsorber are obtained. The experimental results show that the dynamic operating characteristics of the chiller and the thermodynamic characteristics of the adsorber are satisfactory and that the cycle is a novel and effective adsorption cycle. A mass recovery process increases the cyclic adsorption capacity of the system and improves adaptability of the chiller to a low-grade heat source. In addition, the experiment indicates that this novel chiller is highly suitable for an air conditioning system with a low dehumidification requirement or a system with a large cycle flowrate and an industrial cooling water system.

关键词: satisfactory     suitable     recovery     adsorption capacity     thermodynamic    

Activated carbons and amine-modified materials for carbon dioxide capture –– a review

Zhenhe CHEN, Shubo DENG, Haoran WEI, Bin WANG, Jun HUANG, Gang YU

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 326-340 doi: 10.1007/s11783-013-0510-7

摘要: Rapidly increasing concentration of CO in the atmosphere has drawn more and more attention in recent years, and adsorption has been considered as an effective technology for CO capture from the anthropogenic sources. In this paper, the attractive adsorbents including activated carbons and amine-modified materials were mainly reviewed and discussed with particular attention on progress in the adsorbent preparation and CO adsorption capacity. Carbon materials can be prepared from different precursors including fossil fuels, biomass and resins using the carbonization-activation or only activation process, and activated carbons prepared by KOH activation with high CO adsorbed amount were reviewed in the preparation, adsorption capacity as well as the relationship between the pore characteristics and CO adsorption. For the amine-modified materials, the physical impregnation and chemical graft of polyethylenimine (PEI) on the different porous materials were introduced in terms of preparation method and adsorption performance as well as their advantages and disadvantages for CO adsorption. In the last section, the issues and prospect of solid adsorbents for CO adsorption were summarized, and it is expected that this review will be helpful for the fundamental studies and industrial applications of activated carbons and amine-modified adsorbents for CO capture.

关键词: adsorption capacity     CO2 capture     activated carbon     amine-impregnated adsorbents    

Mercury removal from aqueous solution using petal-like MoS2

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1307-0

摘要: Abstract • Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.

关键词: Anionic surfactant     2D material     MoS2 nanosheets     Mercury removal     Adsorption capacity    

标题 作者 时间 类型 操作

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added

Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan

期刊论文

Preparation and characterization of SO42-/TiO2 and S2O82-/TiO2 catalysts

MA Xuedan, GUO Daishi, JIANG Qizhong, MA Zifeng, MA Zhengfei, YE Weidong, LI Chunbo

期刊论文

Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions

期刊论文

Optimization of process parameters for preparation of powdered activated coke to achieve maximum SO

Binxuan ZHOU, Tao WANG, Tianming XU, Cheng LI, Yuan ZHAO, Jiapeng FU, Zhen ZHANG, Zhanlong SONG, Chunyuan MA

期刊论文

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

期刊论文

Performance and mechanism of carbamazepine removal by FeS-SO process: experimental investigation and

期刊论文

Effect of biochar amendment on soil’s retention capacity for estrogenic hormones from poultry manure

Sukhjot MANN, Zhiming QI, Shiv O. PRASHER, Lanhai LI, Dongwei GUI, Qianjing JIANG

期刊论文

Experimental study on capturing CO 2 greenhouse gas by mixture of ammonia and soil

Ying WU, Yifei WANG, Qinghua ZENG, Xin GONG, Zunhong YU,

期刊论文

Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and

Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi

期刊论文

洁净煤技术的新发展——一种火电厂SO2的资源化技术

肖文德,袁渭康

期刊论文

Preparation and adsorption performances of mesopore-enriched bamboo activated carbon

WANG Yuxin, LIU Congmin, ZHOU Yaping

期刊论文

Separation of gibberellic acid (GA3) by macroporous adsorption resins

WANG Ruifang, YANG Jialing, SHI Zuoqing, OU Lailiang

期刊论文

Experimental research on dynamic operating characteristics of a novel silica gel-water adsorption chiller

WANG Dechang, WU Jingyi, WANG Ruzhu, DOU Weidong

期刊论文

Activated carbons and amine-modified materials for carbon dioxide capture –– a review

Zhenhe CHEN, Shubo DENG, Haoran WEI, Bin WANG, Jun HUANG, Gang YU

期刊论文

Mercury removal from aqueous solution using petal-like MoS2

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

期刊论文